VirE2: A Unique ssDNA-Compacting Molecular Machine

نویسندگان

  • Wilfried Grange
  • Myriam Duckely
  • Sudhir Husale
  • Susan Jacob
  • Andreas Engel
  • Martin Hegner
چکیده

The translocation of single-stranded DNA (ssDNA) across membranes of two cells is a fundamental biological process occurring in both bacterial conjugation and Agrobacterium pathogenesis. Whereas bacterial conjugation spreads antibiotic resistance, Agrobacterium facilitates efficient interkingdom transfer of ssDNA from its cytoplasm to the host plant cell nucleus. These processes rely on the Type IV secretion system (T4SS), an active multiprotein channel spanning the bacterial inner and outer membranes. T4SSs export specific proteins, among them relaxases, which covalently bind to the 5' end of the translocated ssDNA and mediate ssDNA export. In Agrobacterium tumefaciens, another exported protein-VirE2-enhances ssDNA transfer efficiency 2000-fold. VirE2 binds cooperatively to the transferred ssDNA (T-DNA) and forms a compact helical structure, mediating T-DNA import into the host cell nucleus. We demonstrated-using single-molecule techniques-that by cooperatively binding to ssDNA, VirE2 proteins act as a powerful molecular machine. VirE2 actively pulls ssDNA and is capable of working against 50-pN loads without the need for external energy sources. Combining biochemical and cell biology data, we suggest that, in vivo, VirE2 binding to ssDNA allows an efficient import and pulling of ssDNA into the host. These findings provide a new insight into the ssDNA translocation mechanism from the recipient cell perspective. Efficient translocation only relies on the presence of ssDNA binding proteins in the recipient cell that compacts ssDNA upon binding. This facilitated transfer could hence be a more general ssDNA import mechanism also occurring in bacterial conjugation and DNA uptake processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Import of Agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins.

To study the mechanism of nuclear import of T-DNA, complexes consisting of the virulence proteins VirD2 and VirE2 as well as single-stranded DNA (ssDNA) were tested for import into plant nuclei in vitro. Import of these complexes was fast and efficient and could be inhibited by a competitor, a nuclear localization signal (NLS) coupled to BSA. For import of short ssDNA, VirD2 was sufficient, whe...

متن کامل

Variable internal flexibility characterizes the helical capsid formed by agrobacterium VirE2 protein on single-stranded DNA.

Agrobacterium is known for gene transfer to plants. In addition to a linear ssDNA oligonucleotide, Agrobacterium tumefaciens secretes an abundant ssDNA-binding effector, VirE2. In many ways VirE2 adapts the conjugation mechanism to transform the eukaryotic host. The crystal structure of VirE2 shows two compact domains joined by a flexible linker. Bound to ssDNA, VirE2 forms an ordered solenoida...

متن کامل

Crystal structure of the Agrobacterium virulence complex VirE1-VirE2 reveals a flexible protein that can accommodate different partners.

Agrobacterium tumefaciens infects its plant hosts by a mechanism of horizontal gene transfer. This capability has led to its widespread use in artificial genetic transformation. In addition to DNA, the bacterium delivers an abundant ssDNA binding protein, VirE2, whose roles in the host include protection from cytoplasmic nucleases and adaptation for nuclear import. In Agrobacterium, VirE2 is bo...

متن کامل

Direct fluorescence detection of VirE2 secretion by Agrobacterium tumefaciens

VirE2 is a ssDNA binding protein essential for virulence in Agrobacterium tumefaciens. A tetracysteine mutant (VirE2-TC) was prepared for in vitro and in vivo fluorescence imaging based on the ReAsH reagent. VirE2-TC was found to be biochemically active as it binds both ssDNA and the acidic secretion chaperone VirE1. It was also biologically functional in complementing virE2 null strains transf...

متن کامل

Surface plasmon resonance imaging reveals multiple binding modes of Agrobacterium transformation mediator VirE2 to ssDNA

VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Biology

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2008